If it's not what You are looking for type in the equation solver your own equation and let us solve it.
r2-4r=0
We add all the numbers together, and all the variables
r^2-4r=0
a = 1; b = -4; c = 0;
Δ = b2-4ac
Δ = -42-4·1·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4}{2*1}=\frac{0}{2} =0 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4}{2*1}=\frac{8}{2} =4 $
| 8x-4-7x=8-29 | | 4x+22=2x+28 | | (s+1)+2(s+1)=36 | | 3(4x+7)=10(x+5) | | 3x+12=5x+41 | | 8(c-6)=3(3c | | 0.25x+5=3x | | 6(a+7)=2(7a-9) | | 0=20+b^2-9b | | 9b=20+b^2 | | 8x+9=13x+4 | | x^2+x=7.24 | | 4b-13=36 | | 13−4b=36 | | x^2+x-7.24=0 | | 6.8x=-33.6 | | x/100=25 | | 12+5n=1 | | 9.871÷n=987.1 | | x/18=0 | | 7x+80=11x-40 | | -6h=-30-15-9 | | X+(x+200)+(x-50)=100 | | 8-x/5x+60=3x-7 | | 3.4x+8.5=3x+8.5 | | 1c+215-7c=140 | | c+215-7c=140 | | 123=30p-37+10p | | 123=30p-27+10p | | 2x^2=210^2 | | 125-7x-2x=80 | | 11a+7a-15=21 |