r2=199

Simple and best practice solution for r2=199 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for r2=199 equation:



r2=199
We move all terms to the left:
r2-(199)=0
We add all the numbers together, and all the variables
r^2-199=0
a = 1; b = 0; c = -199;
Δ = b2-4ac
Δ = 02-4·1·(-199)
Δ = 796
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{796}=\sqrt{4*199}=\sqrt{4}*\sqrt{199}=2\sqrt{199}$
$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{199}}{2*1}=\frac{0-2\sqrt{199}}{2} =-\frac{2\sqrt{199}}{2} =-\sqrt{199} $
$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{199}}{2*1}=\frac{0+2\sqrt{199}}{2} =\frac{2\sqrt{199}}{2} =\sqrt{199} $

See similar equations:

| -5x+(x^2)/2=12 | | 5(x+1)+3(x+4)=-11 | | r^2=199 | | 10+9c=5c-10 | | -7c=-8c+10 | | x=50-15 | | (6x+2)+(x+3)=180 | | 2(5x-2)=6(6x-1) | | 16+2x=-2x | | 2x+71-2^4=0 | | 2x+2(2/3x-5)=14 | | v3+4=68 | | -5j+-2j=+3 | | -7+4g=2g-2g+5 | | 3.25x+400=2.50x600 | | 8-(-2x-4)+12=-56 | | 10+(24x+6)/2=20x+4 | | 8b+6=5b | | (4x+1)+(x-16)=180 | | -s=8-5s | | 5x+4=5(x+2)-x | | (17+2x)+(6x+3)=180 | | 2+4+2x=4(x+2) | | n/2+n=21 | | 4x+9=29+2x | | 2(x+1)+3=2(x+2) | | 7g=-3+6g | | 4x^2-4=124 | | 25+y=28-4y | | 2x^2+10=2x | | x4+3=0 | | -10-9t=-7t+10 |

Equations solver categories