If it's not what You are looking for type in the equation solver your own equation and let us solve it.
r2=3
We move all terms to the left:
r2-(3)=0
We add all the numbers together, and all the variables
r^2-3=0
a = 1; b = 0; c = -3;
Δ = b2-4ac
Δ = 02-4·1·(-3)
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{3}}{2*1}=\frac{0-2\sqrt{3}}{2} =-\frac{2\sqrt{3}}{2} =-\sqrt{3} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{3}}{2*1}=\frac{0+2\sqrt{3}}{2} =\frac{2\sqrt{3}}{2} =\sqrt{3} $
| a-56=-35 | | 6(v-7)+2(v-1)=-68 | | 8x+10=6x+2=180 | | 1/2x+5=x-3 | | z-64=-20 | | 11x-21=16x+30/2 | | 11y^2-88y+176=0 | | -4/3v=-16 | | 16x-3x=-32 | | 8-3(12x-9)=-6(1+6x) | | h−3=2 | | c-9.3=26.2 | | (x+10)+50+(x+20)=180 | | -(7-2x)+7=-2 | | 9p=-10p | | 4=m3 | | 4q-25q=0 | | X-1/4-2=x-1/3 | | 13x=-32 | | a-34.14=31 | | 2x^2-36x-4225=0 | | 11x-21×2=16x+30 | | C=5a-7 | | x/2+2/3=4 | | 6.35=2.5^x | | 3x+3(x-4)=5x-5 | | -5-5x=-10x+20 | | 10(2z+3)=12(z+1) | | 6u-4u=8 | | 16p-p=0 | | 3-2x/7=1 | | 90=-5f-3(-4f-9) |