s+7/2s+10=64

Simple and best practice solution for s+7/2s+10=64 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for s+7/2s+10=64 equation:



s+7/2s+10=64
We move all terms to the left:
s+7/2s+10-(64)=0
Domain of the equation: 2s!=0
s!=0/2
s!=0
s∈R
We add all the numbers together, and all the variables
s+7/2s-54=0
We multiply all the terms by the denominator
s*2s-54*2s+7=0
Wy multiply elements
2s^2-108s+7=0
a = 2; b = -108; c = +7;
Δ = b2-4ac
Δ = -1082-4·2·7
Δ = 11608
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{11608}=\sqrt{4*2902}=\sqrt{4}*\sqrt{2902}=2\sqrt{2902}$
$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-108)-2\sqrt{2902}}{2*2}=\frac{108-2\sqrt{2902}}{4} $
$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-108)+2\sqrt{2902}}{2*2}=\frac{108+2\sqrt{2902}}{4} $

See similar equations:

| k−9=4 | | 15+2x=6-x | | -x=142 | | -4+6x=62 | | s+3/1/2s+10=64 | | 26x/26=56•39/26 | | 1/2(6+8)=2x+4+x | | 1/2(s-12)=1/4(s=16) | | 15=r−-7 | | 7=−6x+1 | | -4d+7+3d=-6 | | 3x-4=-x+36 | | p-4=-4 | | 5b+3÷12=4 | | x/5+5=-10 | | 20-(3x-9)-2=1(-11x+1 | | x/3+x-3/4=5 | | 0.25x=280-x | | 3x-5(x-3)=-2+5x-18 | | 14=y/3+11 | | 4p-3=-8+7p | | 26x/26=56•39/22 | | 12x+12=5x+3+79 | | 9^3−3n=27^3n | | z/8=-4 | | 2(p+7)-6=5(p-1)-5 | | -3x-5(x-2)=-5+4x-33 | | m−10=9 | | 1/2-3/49y=24/49-1/14y | | 20+8d=34d | | 5x-(x+3)=1.3(9x+18)-5 | | 4k+5=8k-27 |

Equations solver categories