If it's not what You are looking for type in the equation solver your own equation and let us solve it.
s2+22s=0
We add all the numbers together, and all the variables
s^2+22s=0
a = 1; b = 22; c = 0;
Δ = b2-4ac
Δ = 222-4·1·0
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{484}=22$$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-22}{2*1}=\frac{-44}{2} =-22 $$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+22}{2*1}=\frac{0}{2} =0 $
| k=7k-6 | | j2+3j+2=0 | | -5x-14-3x=-110 | | 26-3x-1=6x-4x | | 2x+1=111 | | (6u+7)(4u–3)=0 | | -2-5k=3k-10 | | 5x÷7+3=2x÷7+11 | | -2-5k=3k-1 | | 28=9w-8+5w | | 4x+2=130 | | 18=3(2x-4) | | v^2-19v=0 | | 14.4=-16.9-n | | X^2-4x+5=2.96 | | 9q(8q+7)=0 | | 3x2+8=23 | | 2(3-5x)+8x=-34 | | 2c=+7.5=6.2-3c | | 5x÷7+3=2x+11 | | 5/3=n+4/n+6 | | 34x-1+10x+5=180 | | q^2-20q+19=0 | | 3x-120=340 | | 16x+20x=90 | | 6+17z=13z+19 | | -1+19w=11w=23 | | 21+8r=3(5r-3)-5 | | b-6b+9=0 | | (2x+1)−3(x+5)=x2−15x−51 | | -4/5x=1/2 | | 4+2(x+3x)=4−x(2−3)+2x |