If it's not what You are looking for type in the equation solver your own equation and let us solve it.
s2-19=17
We move all terms to the left:
s2-19-(17)=0
We add all the numbers together, and all the variables
s^2-36=0
a = 1; b = 0; c = -36;
Δ = b2-4ac
Δ = 02-4·1·(-36)
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12}{2*1}=\frac{-12}{2} =-6 $$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12}{2*1}=\frac{12}{2} =6 $
| -19.7t+1.31=-18.4t14.83 | | 7x–2=47 | | 2x+-3x=2 | | 8r+10=26 | | 1.1j=2.1j-17.4 | | 70/14=x/95 | | −3(x+2)−4=−5x | | 2(x−4)^2−18=30 | | -6s-20=20-10s | | 0.3(9x+18)=3(x+2) | | 4p+5p-6=12 | | 20-6h-17=-5h-10 | | 4x+5(3x+-13)=11 | | 30/3=80/x | | 4(x−1)^2=8 | | 65=17u | | 20=7y-1 | | -3(x)=2x-2 | | 5x+72+3x=180 | | -4(x-3)=-2x+8-4 | | 22-2x=40 | | 3x2+879=16002 | | 80/16=x/20 | | 18m+16.4+18.7m=11.4m-16.49 | | x1.2+2.3=-3 | | Y=-3.8x+290 | | 4(x-5)/2+4=12 | | 127+65+35+x=360 | | 127+65+35+x=180 | | 5x-20=2(x-1) | | 4(x+8)-4=15x+6 | | 18m+16.4+18.7m=12.4m-16.49 |