Loading web-font TeX/Math/Italic

s2-25=-5

Simple and best practice solution for s2-25=-5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for s2-25=-5 equation:



s2-25=-5
We move all terms to the left:
s2-25-(-5)=0
We add all the numbers together, and all the variables
s^2-20=0
a = 1; b = 0; c = -20;
Δ = b2-4ac
Δ = 02-4·1·(-20)
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
s_{1}=\frac{-b-\sqrt{\Delta}}{2a}
s_{2}=\frac{-b+\sqrt{\Delta}}{2a}

The end solution:
\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}
s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{5}}{2*1}=\frac{0-4\sqrt{5}}{2} =-\frac{4\sqrt{5}}{2} =-2\sqrt{5}
s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{5}}{2*1}=\frac{0+4\sqrt{5}}{2} =\frac{4\sqrt{5}}{2} =2\sqrt{5}

See similar equations:

| 8a-13=4a+31 | | 3x+5+x5=2x-15x-9 | | {x}^{9}-5x+4=0 | | 4^(2x-1)=32 | | 4x^2-9x^2-15x+3=0 | | (3x+5)+x5=(2x-15)x-9 | | 4x-9x^2-15x+3=0 | | 55x=54x | | 4(2y+5)=7y+6 | | Q2=5p+3=2p+9 | | 36x/42=30 | | 3(x+3)²+5(x+3)-2=0 | | 3(x+3)^2+5(x+3)-2=0 | | x2x+9=27 | | 5x−6=2x+18 | | 9x-5=11x-3 | | 6x•5=60 | | -6a+3=-3(2a=4) | | 5x/3=x+7 | | 6x-26=16x-5 | | -16t²+34.14+43.89=0 | | (m+4)/6=-5 | | F(x)=x+0.5=-10.3 | | 5(k-3)=10* | | x/3+6=-2* | | 6n-4=88 | | ⅔x-2=1 | | 5 | | 5 | | v^2–10v+9=0 | | 15(2x+1)=61 | | 0=-16t^2+19.6t+58.8 |

Equations solver categories