If it's not what You are looking for type in the equation solver your own equation and let us solve it.
s2=9
We move all terms to the left:
s2-(9)=0
We add all the numbers together, and all the variables
s^2-9=0
a = 1; b = 0; c = -9;
Δ = b2-4ac
Δ = 02-4·1·(-9)
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6}{2*1}=\frac{-6}{2} =-3 $$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6}{2*1}=\frac{6}{2} =3 $
| -5/2m+25=-25 | | x2=−18−9x | | 4n+10=-30 | | -8=x+1-6 | | 4x-9x+15=-2x+3 | | .–7b–3=–3b+5 | | n/22=13 | | n10=8 | | x+9-2x+6=180 | | 5(x-1)^2=80 | | -4(1-4k)+2=-98 | | 3x+8+7x-16=90 | | u+125=962 | | 2x-x4+2=4x-9-3x+2(x+1 | | 2(x-4)^2=-80 | | k-472=187 | | 0.65p+5=0.45p+10 | | 3x+8+7x-16=180 | | t2=-49 | | 6a-11=61 | | p-56=43 | | (3x+20)2x=90 | | n5=-7 | | 47/36=(−25/6n)+1−n | | (3x+20)2x=180 | | 1/3y+4=6 | | 4x+80=5x+4 | | 1/2(-10x+6)+x=3/2(6x-4) | | 729=y—564 | | 10x-4=38+3x | | 40+.40d=20+.50d | | 2x+44+90=180 |