sin(x)*sin(2x)=cos(x)*cos(2x)

Simple and best practice solution for sin(x)*sin(2x)=cos(x)*cos(2x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for sin(x)*sin(2x)=cos(x)*cos(2x) equation:


Simplifying
sin(x) * sin(2x) = cos(x) * cos(2x)

Remove parenthesis around (2x)
ins * x * ins * 2x = cos(x) * cos(2x)

Reorder the terms for easier multiplication:
2ins * x * ins * x = cos(x) * cos(2x)

Multiply ins * x
2insx * ins * x = cos(x) * cos(2x)

Multiply insx * ins
2i2n2s2x * x = cos(x) * cos(2x)

Multiply i2n2s2x * x
2i2n2s2x2 = cos(x) * cos(2x)

Remove parenthesis around (2x)
2i2n2s2x2 = cos * x * cos * 2x

Reorder the terms for easier multiplication:
2i2n2s2x2 = 2cos * x * cos * x

Multiply cos * x
2i2n2s2x2 = 2cosx * cos * x

Multiply cosx * cos
2i2n2s2x2 = 2c2o2s2x * x

Multiply c2o2s2x * x
2i2n2s2x2 = 2c2o2s2x2

Solving
2i2n2s2x2 = 2c2o2s2x2

Solving for variable 'i'.

Move all terms containing i to the left, all other terms to the right.

Divide each side by '2n2s2x2'.
i2 = c2n-2o2

Simplifying
i2 = c2n-2o2

Take the square root of each side:
i = {-1cn-1o, cn-1o}

See similar equations:

| x^2-23x-23=0 | | 16x-4y=16 | | 7(4+t)-4(t+3)= | | -3mn^4/21m^2n^2 | | ax+bx-cx= | | 3d^2-15d+12=0 | | 7x-(-3x)=-28 | | (7x+18)-(8x-247)=17 | | 8x^2+33x+27=0 | | F(x)=2x^2-12x+23 | | P=2(66)+2(131) | | 0.50(x+500000)=10 | | 16x^2-10x-21=0 | | 5x^4(3x+2)= | | 17+3x=18x-20 | | -21x^2+34x-8=0 | | (X+10)2=16 | | (X+10)=16 | | 400*11000000= | | 16x^4-81x^2=a | | 6x^3+9x^2+24x+22=0 | | Y=2x^2-12x+23 | | 2(x-3)=7(x+4) | | sin(2x)/cos(4x) | | 100x^2=100 | | 7x^2=400 | | 2x/7-9=11 | | 8x+3x-3+2=7 | | (x+8)+(3x^2)=3x^2+x+8 | | 16x^10-y^2=0 | | -x^0= | | 8/x=-6 |

Equations solver categories