sqrt(4x+1)=1+sqrt(2x)

Simple and best practice solution for sqrt(4x+1)=1+sqrt(2x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for sqrt(4x+1)=1+sqrt(2x) equation:


Simplifying
sqrt(4x + 1) = 1 + sqrt(2x)

Reorder the terms:
qrst(1 + 4x) = 1 + sqrt(2x)
(1 * qrst + 4x * qrst) = 1 + sqrt(2x)
(1qrst + 4qrstx) = 1 + sqrt(2x)

Remove parenthesis around (2x)
1qrst + 4qrstx = 1 + qrst * 2x

Reorder the terms for easier multiplication:
1qrst + 4qrstx = 1 + 2qrst * x

Multiply qrst * x
1qrst + 4qrstx = 1 + 2qrstx

Solving
1qrst + 4qrstx = 1 + 2qrstx

Solving for variable 'q'.

Move all terms containing q to the left, all other terms to the right.

Add '-2qrstx' to each side of the equation.
1qrst + 4qrstx + -2qrstx = 1 + 2qrstx + -2qrstx

Combine like terms: 4qrstx + -2qrstx = 2qrstx
1qrst + 2qrstx = 1 + 2qrstx + -2qrstx

Combine like terms: 2qrstx + -2qrstx = 0
1qrst + 2qrstx = 1 + 0
1qrst + 2qrstx = 1

Reorder the terms:
-1 + 1qrst + 2qrstx = 1 + -1

Combine like terms: 1 + -1 = 0
-1 + 1qrst + 2qrstx = 0

The solution to this equation could not be determined.

See similar equations:

| 6n+8=2n+25 | | 3(9n+3n)+n= | | 5x+12+8x-5= | | 2x^2-7x=6x | | z^7-24z^5= | | 6m+20=9m-4 | | 16/6= | | abs(3y+5)=abs(3y+4) | | 6x-2=8+5 | | 7x-9=5x+6 | | 5(4x+2)=84 | | (3x-6)(4x-9)= | | 3(2x-1)=13 | | 3x^2+3x=82 | | 9n+1=3(2n+3) | | 3b=-3b-12 | | 4m+15=6m-3 | | 5r^2+70r+245= | | (0-2)/(4-0) | | 5x+4=3x+9 | | -[2k-11]=7 | | A-(3)=19 | | 2x-6xy=0 | | 5x+2=2x+13 | | 24-x-3=12+18-4x | | 6y=6y+10 | | 11x-4+11x-9=-2-9x-2x | | -3(x-2)7x=9x-3 | | 15x-3x=0 | | (5/9)*(18/35) | | 6b+b+b+b+2a-4b= | | 6x-10/2 |

Equations solver categories