sqrt(6z+10)+8=z+7

Simple and best practice solution for sqrt(6z+10)+8=z+7 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for sqrt(6z+10)+8=z+7 equation:


Simplifying
sqrt(6z + 10) + 8 = z + 7

Reorder the terms:
qrst(10 + 6z) + 8 = z + 7
(10 * qrst + 6z * qrst) + 8 = z + 7
(10qrst + 6qrstz) + 8 = z + 7

Reorder the terms:
8 + 10qrst + 6qrstz = z + 7

Reorder the terms:
8 + 10qrst + 6qrstz = 7 + z

Solving
8 + 10qrst + 6qrstz = 7 + z

Solving for variable 'q'.

Move all terms containing q to the left, all other terms to the right.

Add '-8' to each side of the equation.
8 + 10qrst + -8 + 6qrstz = 7 + -8 + z

Reorder the terms:
8 + -8 + 10qrst + 6qrstz = 7 + -8 + z

Combine like terms: 8 + -8 = 0
0 + 10qrst + 6qrstz = 7 + -8 + z
10qrst + 6qrstz = 7 + -8 + z

Combine like terms: 7 + -8 = -1
10qrst + 6qrstz = -1 + z

Reorder the terms:
1 + 10qrst + 6qrstz + -1z = -1 + z + 1 + -1z

Reorder the terms:
1 + 10qrst + 6qrstz + -1z = -1 + 1 + z + -1z

Combine like terms: -1 + 1 = 0
1 + 10qrst + 6qrstz + -1z = 0 + z + -1z
1 + 10qrst + 6qrstz + -1z = z + -1z

Combine like terms: z + -1z = 0
1 + 10qrst + 6qrstz + -1z = 0

The solution to this equation could not be determined.

See similar equations:

| (8x^3-10x^2-25x)/(4x^2+5x)=0 | | 5x-25=60 | | x+2(x+5)=15 | | 27+y=3+5y | | 5/2x+6=21/4x+8 | | -(4x-5)-(5x-5)+2=-7(x-1)-(7x+8)+3 | | 8x^3-10x^2-25x/4x^2+5x=0 | | 3x=-2(-3x-4)+1 | | 3s-2/2=s | | 6=-4+x | | -5w-6=18 | | 23-x=13+2x | | (8/3)=x-1(1/3) | | -4(0.1x+0.4)-0.6=-0.2 | | 15n^2+28n+5=0 | | 35.84=7g+3.99 | | X-4/10=7/5 | | mx^2+12x+9=0 | | -x+5=26 | | -2(3-x)=-3 | | -2x-3(4-2x)=(2x-3)+2 | | t=85+85+r/3 | | (x+9)+[(x+2)+9]=30 | | 11+3t=-t | | x^2+2=36 | | x+5(6+10)=2 | | 8-(2-3m)=6 | | (9x+5)+(5x+78)=180 | | 4y^2-28y+9=0 | | 1.06g-6=.89 | | 1/2a+10=18 | | 0.75x+2.6=1.35x-7.2 |

Equations solver categories