(1)/(6X)-(5)/(8X) - subtract fractions

(1)/(6X)-(5)/(8X) - step by step solution for the given fractions. Subtract fractions, full explanation.

If it's not what You are looking for just enter simple or very complicated fractions into the fields and get free step by step solution. Remember to put brackets in correct places to get proper solution.

    Solution for the given fractions

    • 1/(6*X) - 5/(8*X) = ?
    • The common denominator of the two fractions is: 48*X^2
    • 1/(6*X) = (1*8*X)/(6*8*X*X) = (8*X)/(48*X^2)
    • 5/(8*X) = (5*6*X)/(6*8*X*X) = (30*X)/(48*X^2)
    • Fractions adjusted to a common denominator
    • 1/(6*X) - 5/(8*X) = (8*X)/(48*X^2) - (30*X)/(48*X^2)
    • (8*X)/(48*X^2) - (30*X)/(48*X^2) = (8*X-(30*X))/(48*X^2)
    • (8*X-(30*X))/(48*X^2) = (-22*X)/(48*X^2)
    • (-22*X)/(48*X^2) = (-11*X^-1)/24

    Solution for the given fractions

    $ \frac{1}{(6*X)} -\frac{ 5}{(8*X)} =? $

    The common denominator of the two fractions is: 48*X^2

    $ \frac{1}{(6*X)} = \frac{(1*8*X)}{(6*8*X*X)} = \frac{(8*X)}{(48*X^2)} $

    $ \frac{5}{(8*X)} = \frac{(5*6*X)}{(6*8*X*X)} = \frac{(30*X)}{(48*X^2)} $

    Fractions adjusted to a common denominator

    $ \frac{1}{(6*X)} -\frac{ 5}{(8*X)} = \frac{(8*X)}{(48*X^2)} - \frac{(30*X)}{(48*X^2)} $

    $ \frac{(8*X)}{(48*X^2)} - \frac{(30*X)}{(48*X^2)} = \frac{(8*X-(30*X))}{(48*X^2)} $

    $ \frac{(8*X-(30*X))}{(48*X^2)} = \frac{(-22*X)}{(48*X^2)} $

    $ \frac{(-22*X)}{(48*X^2)} = \frac{(-11*X^-1)}{24} $

    $ $

    see mathematical notation

     

    See similar equations:

    | (I)/(6X)-(5)/(8X) - subtraction of fractions | | (46)/(105)/(-1)/(322) - dividing of fractions | | (1)/(21)-(7)/(138) - subtract fractions | | (1)/(21)-(7)/(138) - subtraction of fractions | | (17)/(14)-(1)/(8) - subtraction of fractions | | (1)/(2)+(5)/(7) - addition of fractions | | (33)/(56)+(1)/(2) - add fractions | | (6)/(13)-(1)/(5) - subtract fractions | | (5)/(20)+(5)/(80) - add fractions | | (10)/(50)*(4)/(8) - multiply fractions | | (6x^2-7x+2)/(3x^2+x-2)/(4x^2-8x+3)/(5x^2+x-4) - dividing of fractions | | (1x)/(2)*(1)/(2) - multiplying of fractions | | (1)/(6)-(9)/(10) - subtract fractions | | (1)/(2x)/(7)/(4x-11) - dividing of fractions | | (3x+12)/(2x+6)*(x^2+4x+3)/(x+4) - multiplication of fractions | | (1)/(2)+(1)/(16) - add fractions | | (1)/(2)-(1)/(16) - subtraction of fractions | | (2)/(3)*(18)/(1) - multiply fractions | | (x)/(x+2)+(1)/(2) - add fractions | | (3x)/(x+5)-(x-10)/(x+5) - subtraction of fractions | | (3)/(7)/(1)/(2) - dividing of fractions | | (11)/(3)+(3)/(1) - adding of fractions | | (x-3)/(x+2)*(3(x+2))/(3(x-3)) - multiply fractions | | (2x^2)/(2x-3)+(6(x-4))/(8x-12) - addition of fractions | | (8x)/(2x^2-8)*(8x+16)/(32x^2) - multiplying of fractions | | (4m-2)/(3m^3-15)*(5m^2-25)/(8m-4) - multiply fractions | | (x+3)/(4)-(x-3)/(5) - subtraction of fractions | | (2)/(3)*(1)/(8) - multiplying of fractions | | (3)/(5)/(-1)/(4) - dividing of fractions | | (2)/(7)-(8)/(11) - subtract fractions | | (6)/(13)+(4)/(13) - addition of fractions | | (5x-3)/(2)+(x+7)/(3) - adding of fractions |

    Equations solver categories