(x-2)/(x-4)-(3x-4)/(4x-16) - subtraction of fractions

(x-2)/(x-4)-(3x-4)/(4x-16) - step by step solution for the given fractions. Subtraction of fractions, full explanation.

If it's not what You are looking for just enter simple or very complicated fractions into the fields and get free step by step solution. Remember to put brackets in correct places to get proper solution.

    Solution for the given fractions

    • (x-2)/(x-4) - (3*x-4)/(4*x-16) = ?
    • The common denominator of the two fractions is: (x-4)*(4*x-16)
    • (x-2)/(x-4) = ((x-2)*(4*x-16))/((x-4)*(4*x-16)) = ((x-2)*(4*x-16))/((x-4)*(4*x-16))
    • (3*x-4)/(4*x-16) = ((3*x-4)*(x-4))/((4*x-16)*(x-4)) = ((3*x-4)*(x-4))/((x-4)*(4*x-16))
    • Fractions adjusted to a common denominator
    • (x-2)/(x-4) - (3*x-4)/(4*x-16) = ((x-2)*(4*x-16))/((x-4)*(4*x-16)) - ((3*x-4)*(x-4))/((x-4)*(4*x-16))
    • ((x-2)*(4*x-16))/((x-4)*(4*x-16)) - ((3*x-4)*(x-4))/((x-4)*(4*x-16)) = ((x-2)*(4*x-16)-((3*x-4)*(x-4)))/((x-4)*(4*x-16))
    • ((x-2)*(4*x-16)-((3*x-4)*(x-4)))/((x-4)*(4*x-16)) = ((x-2)*(4*x-16)-((3*x-4)*(x-4)))/((x-4)*(4*x-16))

    Solution for the given fractions

    $ \frac{(x-2)}{(x-4)} - \frac{(3*x-4)}{(4*x-16)} =? $

    The common denominator of the two fractions is: (x-4)*(4*x-16)

    $ \frac{(x-2)}{(x-4)} = \frac{((x-2)*(4*x-16))}{((x-4)*(4*x-16))} = \frac{((x-2)*(4*x-16))}{((x-4)*(4*x-16))} $

    $ \frac{(3*x-4)}{(4*x-16)} = \frac{((3*x-4)*(x-4))}{((4*x-16)*(x-4))} = \frac{((3*x-4)*(x-4))}{((x-4)*(4*x-16))} $

    Fractions adjusted to a common denominator

    $ \frac{(x-2)}{(x-4)} - \frac{(3*x-4)}{(4*x-16)} = \frac{((x-2)*(4*x-16))}{((x-4)*(4*x-16))} - \frac{((3*x-4)*(x-4))}{((x-4)*(4*x-16))} $

    $ \frac{((x-2)*(4*x-16))}{((x-4)*(4*x-16))} - \frac{((3*x-4)*(x-4))}{((x-4)*(4*x-16))} = \frac{((x-2)*(4*x-16)-((3*x-4)*(x-4)))}{((x-4)*(4*x-16))} $

    $ \frac{((x-2)*(4*x-16)-((3*x-4)*(x-4)))}{((x-4)*(4*x-16))} = \frac{((x-2)*(4*x-16)-((3*x-4)*(x-4)))}{((x-4)*(4*x-16))} $

    $ $

    see mathematical notation

     

    See similar equations:

    | (-6)/(5v^2w)+(7)/(4v^3w^2) - addition of fractions | | (1)/(7)*(3)/(7) - multiplication of fractions | | (A^2-a-6)/(1)+(1)/(A^2+5a+6) - adding of fractions | | (4)/(2)+(8)/(1) - addition of fractions | | (2z)/(9)/(5z)/(18) - dividing of fractions | | (x)/(8.5)+(8.5)/(8.8+x) - add fractions | | (3)/(4)-(3)/(8) - subtraction of fractions | | (5/4-3/4)/(x-6)-(x)/(2x) - subtraction of fractions | | (2)/(3)*(8)/(1) - multiply fractions | | (3m-5n)/(12m)+(m-6)/(12m) - adding of fractions | | (3x-1)/(6)+(2x+5)/(9) - addition of fractions | | (10)/(15)+(15)/(65) - add fractions | | (265)/(1)/(5)/(7) - dividing of fractions | | (48)/(1)/(6)/(7) - dividing of fractions | | (6)/(7)/(48)/(1) - divide fractions | | (4)/(1)+(3)/(7) - add fractions | | (3)/(7)/(4)/(1) - dividing of fractions | | (9)/(1)/(3)/(5) - dividing of fractions | | (1)/(3)/(1)/(6) - dividing of fractions | | (1)/(3)*(9)/(22) - multiplying of fractions | | (2)/(3)*(1)/(9) - multiplication of fractions | | (1)/(2)*(5)/(6) - multiply fractions | | (3)/(1)*(1)/(7) - multiplication of fractions | | (2)/(5)*(2)/(5) - multiply fractions | | (2)/(35)/(2)/(5) - divide fractions | | (9)/(10)+(13)/(40) - add fractions | | (9)/(10)+(13)/(40) - addition of fractions | | (7)/(9)+(7)/(18) - addition of fractions | | (2)/(9)+(11)/(18) - addition of fractions | | (2x+5)/(5)+(4x-1)/(5) - addition of fractions | | (-6)/(25)/(5)/(12) - dividing of fractions | | (6)/(7)*(4)/(11) - multiplying of fractions |

    Equations solver categories