A system of equations is a collection of two or more equations with a same set of unknowns.
In solving a system of equations, we try to find values for each of the unknowns that will satisfy every equation in the system.
The equations in the system can be linear or non-linear.
Remember to put linear equations with variables x and y.
for example:
2x+y=8
x+3y=14
| -8x-y=16;3x-y=5 |
| x-y=11;2x+y=4 |
| -8x-8=-40y;50y-10=10x |
| 0=-11y+8x+33;-1+4/9x+1/3y=0 |
| 0=-16+4x+4y;0=28-7y+7x |
| 3x-y=9;-3x+y=-9 |
| -4x+y=8;4x-y=8 |
| x=2y-8;-2x+3y=14 |
| y=2x;y=2x-3 |
| x-3y=2;7x+y=36 |
| 2x+5y=16;2x+3y=8 |
| 2c+5p=16;2c+3p=8 |
| x/5;7/4 |
| -(x-2)=3(y+1);2x+3=4y-1 |
| 4x-12y=17;2x+6y=1 |
| 1A+4C=85;3A+2C=105 |
| 2x-11y=7;3x-9y=7 |
| 40-2x;X=3 |
| x+y=220;2x+4y=520 |
| 3p+2b=29;5p+3b=47.50 |
| 4x+2y=23.50;2x+4y=18.50 |
| t=2r+3;5r-4t=6 |
| x+y=5157.50;y-x=917.50 |
| x+y=177;x=97 |
| x+y=55;x+10=181 |
| x+y=10;x-y=4 |
| 1/5x+1/3y=14/15;1/5x+4y=78/5 |
| 8x+16y=3520;-8x-8y=2560 |
| 1/25x-1/100y=7/5;1/4x+4/25y=66/5 |
| -2x+5y=5;-4x+10y=0 |
| 1/2x+1/3y=-5/3;1/2x+4y=2 |