t(2t+3)/t+6,t=-2

Simple and best practice solution for t(2t+3)/t+6,t=-2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for t(2t+3)/t+6,t=-2 equation:



t(2t+3)/t+6.t=-2
We move all terms to the left:
t(2t+3)/t+6.t-(-2)=0
Domain of the equation: t!=0
t∈R
We add all the numbers together, and all the variables
6.t+t(2t+3)/t+2=0
We multiply all the terms by the denominator
(6.t)*t+t(2t+3)+2*t=0
We add all the numbers together, and all the variables
(+6.t)*t+t(2t+3)+2*t=0
We add all the numbers together, and all the variables
2t+(+6.t)*t+t(2t+3)=0
We multiply parentheses
6t^2+2t^2+2t+3t=0
We add all the numbers together, and all the variables
8t^2+5t=0
a = 8; b = 5; c = 0;
Δ = b2-4ac
Δ = 52-4·8·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{25}=5$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5}{2*8}=\frac{-10}{16} =-5/8 $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5}{2*8}=\frac{0}{16} =0 $

See similar equations:

| c4=−5  | | 8(-2x-48)+12=-52 | | -3(3x-15)+4x=25 | | 1.037x+.02x=30.285 | | -2a+7=3a+2 | | 8+p=-2p-3 | | 8n-5n+8=13 | | 8n-5n+6=6 | | 8x-(4+3x)=x+1 | | 9m=-10+8m | | x^2(x−3)=0 | | 2(-1)-y=-2 | | 2w=×1 | | 4n+6-2n=2(; | | X=-4x-15 | | 30n-40+2n=15 | | 26=6+2r | | -6x+23=-55 | | 4(3x+5)−6(3x−7)=12x+3(4x−6) | | −5x+12=−5x−12 | | x=12-15 | | 14(3x-2)=-16 | | x=3(4)-15 | | −5x+12=−12x−12 | | -5(y-2y)+1=-2(4y-y)+5+10 | | -2(x+1)=7-3x | | 9y=10+12y | | 8n-2n+7=41 | | 2(x+4)=x+0 | | 7-(2x-7)=5-3x | | -5(2a-3)=5 | | -8z+6-3z=10-10z |

Equations solver categories