If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t(80-16t)=30
We move all terms to the left:
t(80-16t)-(30)=0
We add all the numbers together, and all the variables
t(-16t+80)-30=0
We multiply parentheses
-16t^2+80t-30=0
a = -16; b = 80; c = -30;
Δ = b2-4ac
Δ = 802-4·(-16)·(-30)
Δ = 4480
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4480}=\sqrt{64*70}=\sqrt{64}*\sqrt{70}=8\sqrt{70}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(80)-8\sqrt{70}}{2*-16}=\frac{-80-8\sqrt{70}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(80)+8\sqrt{70}}{2*-16}=\frac{-80+8\sqrt{70}}{-32} $
| 0.1n=25+0.5(n-200) | | 24=2w+2(1) | | 0.1n=25+0.5n | | 24=2w+2*1 | | 19-16x-5=-16x+7(-x-9) | | x+2x+(x+92)=180 | | 1/6*x=4/54 | | 1/2-1(18z+8)=8(z-3) | | 16x-3=15x+19 | | 19–16j–5=-16j+7(-j–9) | | -2(8x-7)=-(16+14x) | | 7=15-8n | | -2(8s–7)=-(16+14s) | | -9d+8=-19 | | -4(2x-15)=-18x | | 4x^2-72x+324=432 | | -4(2u–15)=-18u | | 4(-2+7g)=6(4+4g) | | 3z=3(-6z+7) | | 5(-8+4y)=4(11y-4) | | 2(x-2)^2+8=0 | | 5(-8+4y)=4(11y–4) | | 210+.25x=405 | | -2(-9x+4)=-x+10x-8 | | 2w-4=3(w+6)2w-4=3w+18-2w-2w | | -2(-9x+4)=-x+10x–8 | | -8+21x=65 | | 4x+2=2(x+6 | | (2x-6)x=1=180 | | 2x-6x+1=180 | | -2(-9c+4)=-c+10c–8 | | 2=8b+18 |