If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t(8t+9)=0
We multiply parentheses
8t^2+9t=0
a = 8; b = 9; c = 0;
Δ = b2-4ac
Δ = 92-4·8·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-9}{2*8}=\frac{-18}{16} =-1+1/8 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+9}{2*8}=\frac{0}{16} =0 $
| s-5/2=4 | | v+3/2=4 | | 2-(4x-19)=5(x-3) | | x+1.2x=480 | | (y+3)(y−1)=0 | | 10=2n-4 | | 3+3u=15 | | (v−9)(v−5)=0 | | 6.8*n=38800 | | 32x+-6=90 | | X+1/2+x+3/4=1/2 | | 6x+55=77 | | 2(x+0.6)+5(1.2-x)=0 | | (3-x)(-5)=4-5x-16 | | 5+2n=-4 | | 5.1g+8=2.1g+14 | | 2.4x-3=3(1+0.4) | | 3(a-6)=-5-7+3a | | 5x-14-2x=7×4 | | 7/2x+1/3x=12+5/3x | | t-76=218 | | 0.25(2n-28)=10 | | 1/4(2n-28)=10 | | 3d+2(d-5)=25 | | ∠B=3x+13∘ | | -7c-5c+8=-16 | | -7+7x=2(-7+7x) | | 7-x/2+8=10 | | 4(-6+5v)=-16 | | 18=6r-3r | | 6.25-1.25x=x | | (2x+31)=0.5(7x-24) |