If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t(t+1)=64
We move all terms to the left:
t(t+1)-(64)=0
We multiply parentheses
t^2+t-64=0
a = 1; b = 1; c = -64;
Δ = b2-4ac
Δ = 12-4·1·(-64)
Δ = 257
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{257}}{2*1}=\frac{-1-\sqrt{257}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{257}}{2*1}=\frac{-1+\sqrt{257}}{2} $
| (t^2+t-64)=0 | | 5(1/5c)=7/2 | | 73x^2-6x+1=0 | | (x+7)^2=-13 | | 9=n/7 | | 20=n/3 | | 16=n/15 | | 25x1.6=5 | | 22=n/10 | | 4x-0=43 | | 17=n/7 | | 5s+198.36=3s+347.13 | | X=0.5,y=0.12 | | 6+7n=2n+1 | | 8x*x=180 | | 3x-(2x-5)=4 | | 3x-2(2x-5=4 | | 3^-x=1/243 | | 52-(3x+6)=3(x+6)+x | | X1/3+x1/5=8 | | 11d-6=44 | | 10{c+3}=120 | | 10c+3=120 | | x2+x+1=7x2+x+1=7 | | -5(-3u+8)-2u=3(u-7)-1 | | -6(2+4x)-2(x+4)=28x | | 9b-8=18 | | 1/3a-11=10 | | -5.25×x+5×(x-1.2)=1+25×0.1 | | -2x-12=26 | | 2(-3x-6)-4x=-26 | | 0.4x=9+0.5x=19 |