If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t(t+8)=0
We multiply parentheses
t^2+8t=0
a = 1; b = 8; c = 0;
Δ = b2-4ac
Δ = 82-4·1·0
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8}{2*1}=\frac{-16}{2} =-8 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8}{2*1}=\frac{0}{2} =0 $
| 5600((1-z)^5-5z(1-z)^4)=0 | | 2(x+3)+3x=2x-9 | | w(4w+7)=0 | | y-25=110 | | 4x-106+x-17+7x-219=180 | | x-4=1/4(8x-16 | | 24x-18x+8x=-10x-25 | | 5x+15+110=180 | | 3/6(x-3)+10=2/4(3x-4) | | 8x+8=8x-56 | | .375c-11=13 | | 11+x+10=24 | | -36+7x=76=x | | -3(4p+5)-2(6-14p)=3(8+5p) | | 15k/8+1/4=4 | | 3(6n+12)-(10n-6)=0 | | 1+x+10=24 | | -27+10x=8 | | -3(4p+5)-2(6-14p=3(8+5p) | | 3(8-6x)+8x=-5(2x-5) | | 5=m(8)+2 | | -4-2y=-16 | | 9=y÷1 | | 8x+2(3x-10)=2(7x-10) | | 9y=1=4 | | 2x(3-4x)=-8 | | 3-1/4x=5/x | | 10z-4=10 | | 5(5x-2)=22 | | 5x-10=7x-2x-4 | | 3(t-4)+7t=5(2t+4)-100 | | 7.3+8.1r=-4.5 |