t+(t-35)+(t-46)+1/2t=360

Simple and best practice solution for t+(t-35)+(t-46)+1/2t=360 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for t+(t-35)+(t-46)+1/2t=360 equation:



t+(t-35)+(t-46)+1/2t=360
We move all terms to the left:
t+(t-35)+(t-46)+1/2t-(360)=0
Domain of the equation: 2t!=0
t!=0/2
t!=0
t∈R
We get rid of parentheses
t+t+t+1/2t-35-46-360=0
We multiply all the terms by the denominator
t*2t+t*2t+t*2t-35*2t-46*2t-360*2t+1=0
Wy multiply elements
2t^2+2t^2+2t^2-70t-92t-720t+1=0
We add all the numbers together, and all the variables
6t^2-882t+1=0
a = 6; b = -882; c = +1;
Δ = b2-4ac
Δ = -8822-4·6·1
Δ = 777900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{777900}=\sqrt{100*7779}=\sqrt{100}*\sqrt{7779}=10\sqrt{7779}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-882)-10\sqrt{7779}}{2*6}=\frac{882-10\sqrt{7779}}{12} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-882)+10\sqrt{7779}}{2*6}=\frac{882+10\sqrt{7779}}{12} $

See similar equations:

| 2v−6v=–4v | | 8y+y2=180 | | (x)(40)=16 | | 35=9e | | x+x+x+1/2x+(-35)+(-46)=360 | | 7=27x | | 2x+2+3x-1=2x-8 | | Y^+18y-10y-180=0 | | f(70)=3(4900)-5 | | y+16.7=-46 | | x+x+x+1/2x+-35+-46=360 | | f(70)=3(70)^2-5 | | 2.5x-7=8 | | -15=3x/4 | | 2(u+3)-7u=11 | | (x+22)^2=25 | | –6d+6=–5d | | F(x)=2x5+-6x3+8x2+-5 | | C=5/9x(158-32) | | 12x-3=9x+42 | | s+14/4=4 | | y+1/3-3y-1/6=5 | | 3,5x+4=7 | | 4-4x=2x-5x+5 | | 0.09/x=1.8 | | 49x^2=-84x-36 | | b-18/2=1 | | (6x-9)+(4x+1)=112 | | 3+5x=4x-4 | | x^-x-90=0 | | 2(4x-3)(=5x-18 | | 3u-9+2(5u+1=-2(u+6) |

Equations solver categories