If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t1+t2=88
We move all terms to the left:
t1+t2-(88)=0
We add all the numbers together, and all the variables
t^2+t-88=0
a = 1; b = 1; c = -88;
Δ = b2-4ac
Δ = 12-4·1·(-88)
Δ = 353
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{353}}{2*1}=\frac{-1-\sqrt{353}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{353}}{2*1}=\frac{-1+\sqrt{353}}{2} $
| 1/9x+7=12 | | -2=2s | | -4(2x-5)=-8(-3+x) | | 4.50x+50=525 | | 7-7x+2=2+6x | | 32p+5-9(3p-4)=5+6(p+6) | | 96=-6(-4+3x) | | 2x13=32 | | 0.9-3/g=-0.4 | | 2.3/5=x/7 | | 3(8+2x)-6x=24 | | -y+56=283 | | -x^2-6x+99=0 | | 10e-2e=39 | | 2-7s+5s+8=6s+34-4s | | 1/2x=3/4+2x | | 3(b-4)=2b+8 | | 3(x-2)=6(x+4 | | 21=-y+181 | | y=9-23 | | 13(3c+2)=2(c+2)+4c | | 4n-6=50 | | 3-(3-x)(4x+1)=x(4-x) | | y=9-22 | | 280=x^2+8x | | 234-v=31 | | 3+3s-9s=22 | | 9x+9=x+6 | | a/5+4=10 | | 2n+4=9n-17 | | 11-4x-7=10x=6 | | 2b=24−4b−2b |