If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t2+12=61
We move all terms to the left:
t2+12-(61)=0
We add all the numbers together, and all the variables
t^2-49=0
a = 1; b = 0; c = -49;
Δ = b2-4ac
Δ = 02-4·1·(-49)
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14}{2*1}=\frac{-14}{2} =-7 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14}{2*1}=\frac{14}{2} =7 $
| 3w-24=33 | | 24n=-32 | | 5/7=12/n | | 10/3m+4/m=4 | | z+(15)=3 | | -5-3m-m=7m-5 | | c=40.50-0.07 | | -5x-4=2-3x | | 3+3x-(-2)=3x+4 | | 9x-4+3x-5=12x | | 5x+18+8x-23=180 | | 9/2b-5/b=5 | | -9(-5)-14y=0 | | 2x+10=-3x-4 | | 3=t^2+7t | | 7^3x-1=7^x+3 | | -20.8=v/7-3.3 | | 2^{x}+13=35 | | x^2-10x+25=625 | | 9x+31=14x-23 | | 2*3/4x+24=3x | | n/5/6n=10 | | P=3p-44 | | 4(t+1)+(t+2)=6(t-3)-1 | | 9x+3=14x-23 | | 12x²+10=598 | | 14-18=7y+9-6y | | Y=3/4x+40 | | Y=-3/4x+30 | | 12b+9=7b+24 | | Y=-3/4x+40 | | 1/2(10-30g)=20 |