If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t2+14t-40=0
We add all the numbers together, and all the variables
t^2+14t-40=0
a = 1; b = 14; c = -40;
Δ = b2-4ac
Δ = 142-4·1·(-40)
Δ = 356
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{356}=\sqrt{4*89}=\sqrt{4}*\sqrt{89}=2\sqrt{89}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{89}}{2*1}=\frac{-14-2\sqrt{89}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{89}}{2*1}=\frac{-14+2\sqrt{89}}{2} $
| 6x-5=-x+58 | | -(4y-3)=35 | | 4(3x-3)-2=4(x-2)+26 | | 81y=10(y+41) | | 6x-5=-x÷58 | | 7=2(5+x)+3 | | -15+3x=9+5x | | 7t+3(t-2)=8(t-3)-10 | | 3d+4+4d=4(3d-4) | | -3x-15=18-6x | | -3x-29=62+4x | | 4x^2=-2x+42 | | y/4.8=3 | | -16+x=5x+8 | | -80=-1-9x | | 16x2-8=0 | | 7x=49^3 | | (3x^2+9x^2+45x)/9x^2=0 | | 1/3|z|=2 | | 11+2x-5-14x=9 | | Y=1/3(9x-18) | | 3b-15=6b+10 | | -8+4y=20 | | (x+6)/5=19 | | 5=2(5-5*x^2) | | M+4/m=-5 | | x^2=144´ | | -6c+16c+32=72 | | 42w=196+2w^2 | | 5(2x+1)=3(5x+7) | | 5x^+54=679 | | 0=0.5x^2+36x-594 |