If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t2+23t+22=0
We add all the numbers together, and all the variables
t^2+23t+22=0
a = 1; b = 23; c = +22;
Δ = b2-4ac
Δ = 232-4·1·22
Δ = 441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{441}=21$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(23)-21}{2*1}=\frac{-44}{2} =-22 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(23)+21}{2*1}=\frac{-2}{2} =-1 $
| k/2+2=-4 | | X+1=9x-3 | | 8b^2=120+16b | | 10x+5-5x-10=20x+10x=3 | | 7x+8-8=2(4x-4) | | -8x=-196 | | h/2+5=-3 | | .5x+.5(x+10)=3.5-x+5.5 | | 20+17y=-15y | | 4=3k-8 | | I4x-3I=17 | | 3/8=-5/4y | | 0.3/0.11=2.7/z | | 0=3g+-6 | | 4x-6-6x=12 | | (7500/x)*150=562.50 | | 4(5x+6)=-40+44 | | 11/y+6=4/y+10 | | 2(2x+4)=10x+2 | | 6y+3=15+3y | | (7500/x)x150=562.50 | | x+33=149 | | x2=x2+1 | | x+96=159 | | -6=3(5y+2 | | x+2/3=-3/4 | | 5f-12=-23 | | 151=x+5+3x-1+5x-6 | | -6(2k-3)=-6 | | 2n^2+13n-56=0 | | h/3-8=19 | | 3x+10=5x+-6 |