If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t2+7t-3=0
We add all the numbers together, and all the variables
t^2+7t-3=0
a = 1; b = 7; c = -3;
Δ = b2-4ac
Δ = 72-4·1·(-3)
Δ = 61
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{61}}{2*1}=\frac{-7-\sqrt{61}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{61}}{2*1}=\frac{-7+\sqrt{61}}{2} $
| 6a-24=-72 | | -2d+127=45 | | 5x-5(7x+6)=-240 | | -3x/5-150=9 | | -10x+127=-273+6x | | 3x+48x=180 | | 3x(x+48)=180 | | -2x+2(7x-10)=124 | | -52+6x=32 | | 9j-4.5=9j-4.5 | | 7(x+4)+3=31 | | 9+3b+2(b-1)=68 | | 5(2x-1)=2(5x-1) | | 5(2x-1)=2(5x-1 | | 14(20.5-2.5y)+8y=98 | | 6(r+9)=90 | | -7(f-78)=-56 | | 8(q+22)=-48 | | 1+35=-4(9x-9) | | -6(b+63)=30 | | -3(w-53)=-60 | | -18+22=-4(x+1) | | -7(p-86)=-43 | | 3x+41=56 | | 6(n-79)=72 | | 10(k-89)=100 | | -9-5x=-14 | | 14+22=-4(6x-9) | | -18=-2(g-11) | | -5x+41=36 | | (6x+3)^2=46 | | 6n+5+4n-5=180 |