If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t2+8t+15=0
We add all the numbers together, and all the variables
t^2+8t+15=0
a = 1; b = 8; c = +15;
Δ = b2-4ac
Δ = 82-4·1·15
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2}{2*1}=\frac{-10}{2} =-5 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2}{2*1}=\frac{-6}{2} =-3 $
| 0=7u-7u | | 9+3(x-9)=8-5(x-9) | | (154+198+x)/3=160 | | 154+198+x=160 | | 2(c-3)+4=10 | | -2(x+5)=4(3x+8) | | 2(c–3)+4=10 | | 88-(3c+4)=2(c+5)+c | | 8x-5x+170=8x+75 | | 12/x+2+26/2x+1=5 | | 1-g=-8 | | 1–g=-8 | | 12-4x+x=-3 | | 3x+15+60+90=180 | | (12/x-2)+(26/2x+1)=5 | | 8+2x−4=6+2(x−1) | | -36+12x-8x=36 | | 2(h–5)–-6=10 | | 2x+4^7=3x+4^5 | | -127-3x-6x=44 | | 5=2(w-2)-3 | | 7y-12+5y+12=180 | | -9-11x=6+ | | 0=-5m^2+17m-40 | | 15=2(w–2)–3 | | -16/n=4 | | 8x-12-9x-18=0 | | -1=6×5+6x | | 0=-5m^2-37m+72 | | 5(y+1)–7=78 | | 8x-125+x=109 | | 1-f=14 |