If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t2+8t+7=0
We add all the numbers together, and all the variables
t^2+8t+7=0
a = 1; b = 8; c = +7;
Δ = b2-4ac
Δ = 82-4·1·7
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-6}{2*1}=\frac{-14}{2} =-7 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+6}{2*1}=\frac{-2}{2} =-1 $
| 7(x-1)48=180 | | 2.5j-0.86=11.1j | | -3(4m-2)=36 | | -13d-13=-14d | | -64=-8(u+7) | | -5y-1=9-10y | | -16+9p=10p | | 16m+17=3m-19+17m | | 5+9u=3+7u | | -8-4n+9=-7n+7 | | 18-(2-x)=42 | | 5-5p=-10p | | F(x)=-0.2x^2+1.7x+5 | | 20-8f=-18-6f | | 7x-4=3x/8 | | -3w-6=-5w+8 | | C+17=10c-1 | | F(x)=-0.2x^2+1.7x+5.3 | | 5u-4=-9+10u | | 42x=10 | | 9-7s=-8s | | 4+8y=9y | | -7-7+2b=-b+10 | | 6x+35=890 | | -9+6j=9j+3 | | 3x+34=6x-2 | | 6=x/6+8 | | 6x+4=1.5+13 | | 56x=13 | | -20-13c=14c | | -2h-4=-6h | | c+3c+8=2c-8 |