If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t2-1=1
We move all terms to the left:
t2-1-(1)=0
We add all the numbers together, and all the variables
t^2-2=0
a = 1; b = 0; c = -2;
Δ = b2-4ac
Δ = 02-4·1·(-2)
Δ = 8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8}=\sqrt{4*2}=\sqrt{4}*\sqrt{2}=2\sqrt{2}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{2}}{2*1}=\frac{0-2\sqrt{2}}{2} =-\frac{2\sqrt{2}}{2} =-\sqrt{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{2}}{2*1}=\frac{0+2\sqrt{2}}{2} =\frac{2\sqrt{2}}{2} =\sqrt{2} $
| y2−8y+25=0 | | 31-7a=12=32 | | 3a-7a=12+32 | | 2a2+19a+45=0 | | d/4+12=16 | | x/7+4=4/7 | | 2/5(2y+5)+1/3(4y-1)=9 | | 35=5(j-90) | | 2(x+2)^(5/2)+6=70 | | 35=5(j−90) | | 6(11)=6(7b-3) | | 4x+1x+30=180 | | 5x^2-9=30 | | 4x^2-3=12 | | (9+p)2=45 | | 497=36+n | | 10/x-30=400 | | n/3+10=13 | | 2x^2+0,5=5 | | 7.4=-1p-2.8 | | u/3+8=10 | | 2x^2−8=0 | | u3 + 8 = 10 | | 2(-2y-1)+2y=7 | | h=-16(1.5)^2+24(1.5) | | .90x=52 | | 2(x+12)-2x=3(x-6) | | h=-16(1.2)^2+24(1.2) | | 3h-10=2 | | h=-16(0.9)^2+24(0.9) | | h=-16(0.6)^2+24(0.6) | | h=-16(0.3)^2+24(0.3) |