If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t2-2t-4=0
We add all the numbers together, and all the variables
t^2-2t-4=0
a = 1; b = -2; c = -4;
Δ = b2-4ac
Δ = -22-4·1·(-4)
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{5}}{2*1}=\frac{2-2\sqrt{5}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{5}}{2*1}=\frac{2+2\sqrt{5}}{2} $
| 107=x+.07x | | 6x+11=4x-25+3x | | q+2=2√4q-7 | | q+2=2√(4q-7) | | 10z=0.8 | | 2/(x+4)^2+7/(x+4)+3=0 | | 1=2/5a | | 8v+35=13v | | (3x+4)/4=2x-9 | | -14=s−15 | | t2-5t=0 | | 54=7v+2v | | Z=14+8i | | 1.03^x=1.6 | | a+11=21 | | 9(X-6)=54x-6 | | 2000=1250*(1.03^n) | | 2000=1250*1.03^n | | 6n^2+12n-38=10 | | 1.03^n=1.6 | | 28/x+1=7/2 | | 26=r+7 | | 8(x+4)=12-4 | | a^2-8a-78=6 | | b^2-16b+69=6 | | x^2+18x+66=-6 | | 3×6=k×9k= | | 4x/1x= | | -30=-w/7 | | 2y+1/2=6 | | 3x+5-2x-10=0 | | -1=2+3(2x-7) |