If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t2-t-4=0
We add all the numbers together, and all the variables
t^2-1t-4=0
a = 1; b = -1; c = -4;
Δ = b2-4ac
Δ = -12-4·1·(-4)
Δ = 17
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-\sqrt{17}}{2*1}=\frac{1-\sqrt{17}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+\sqrt{17}}{2*1}=\frac{1+\sqrt{17}}{2} $
| t2-t-4=0 | | 7x+11=14x-10 | | 7x+11=14x-10 | | x=1/6*3 | | x=1/6*3 | | 6x+320-2x+4+3x=600 | | 9^3x-1=1/243 | | 81^x=25^x | | 12m-3=5/2m+1/ | | 2(x-3)-4(x+1)=5x-38 | | 2(x-3)-4(x+1)=5x-38 | | 2(x-3)-4(x+1)=5x-38 | | 2(x-3)-4(x+1)=5x-38 | | 2(x-3)-4(x+1)=5x-38 | | 2(x-3)-4(x+1)=5x-38 | | 250+x+(110-x)=360 | | 250+x+(110-x)=360 | | 14=3q−4 | | 14=3q−4 | | 14=3q−4 | | 14=3q−4 | | 14=3q−4 | | 14=3q−4 | | 14=3q−4 | | 14=3q−4 | | 14=3q−4 | | 14=3q−4 | | 14=3q−4 | | 14=3q−4 | | 14=3q−4 | | 14=3q−4 | | 14=3q−4 |