If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t2=12
We move all terms to the left:
t2-(12)=0
We add all the numbers together, and all the variables
t^2-12=0
a = 1; b = 0; c = -12;
Δ = b2-4ac
Δ = 02-4·1·(-12)
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{3}}{2*1}=\frac{0-4\sqrt{3}}{2} =-\frac{4\sqrt{3}}{2} =-2\sqrt{3} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{3}}{2*1}=\frac{0+4\sqrt{3}}{2} =\frac{4\sqrt{3}}{2} =2\sqrt{3} $
| q=-6+0.4/0.5 | | 54=-16t^2+104t+12 | | N=2,a=6 | | 54(t)=-16t^2+104t+12 | | -3.4+19.4q=19.9q | | 42=14g+0.08 | | -3.36-9.2g=-8.9g | | X-0.08x=148 | | 12.66+15.95-10.7u=-13.6u-17.21 | | 9x-21=2x+7 | | 3t-3.33=3.6t+5.79 | | 3t-3.33=3.6+5.79 | | -20+5t=3t+12 | | -4-1+2v=8+v | | 3p+4×(2p-1)=7 | | -16+17b=19b | | -10+3s=10+s | | 90=12,8x1 | | 3x+8x+4x=6x+63=5x+23 | | (2x+8)°+(5x-2)°=90° | | 2-4p=10-7p+4p | | 90=12.8xX | | (-10d)=(-7d)-6 | | 90=12,8.x | | 50/70=x/7 | | 12*4=8+x | | 2x^2-90x=1 | | 28+42=x-5 | | 9c-6=14 | | 0.6x=192 | | 15d−13d=6 | | 5^(2x)+1=26(5^(x-1))=0 |