If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t2=125
We move all terms to the left:
t2-(125)=0
We add all the numbers together, and all the variables
t^2-125=0
a = 1; b = 0; c = -125;
Δ = b2-4ac
Δ = 02-4·1·(-125)
Δ = 500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{500}=\sqrt{100*5}=\sqrt{100}*\sqrt{5}=10\sqrt{5}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{5}}{2*1}=\frac{0-10\sqrt{5}}{2} =-\frac{10\sqrt{5}}{2} =-5\sqrt{5} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{5}}{2*1}=\frac{0+10\sqrt{5}}{2} =\frac{10\sqrt{5}}{2} =5\sqrt{5} $
| 28.1q-21.8=28.1-21.08 | | 33=3+6w | | 6(8-6m)=19-7m | | 65=5+x= | | 12t+1=1 | | 4=2d-6 | | 15x-(2×2)=3x-15 | | 1.4x−2.1=−4.9 | | 3x-4=2x7 | | 3t-7/15=13/5 | | 15x-x2=3x-15 | | X2+4x-11=0 | | 7(t-4)-2=4(t-3) | | 2*z/3-7=-9 | | 3X+5k=18 | | 20=4(g-15) | | X2-6x=-5 | | -13=(9/5)c+32 | | 10-6y=7 | | 1/3(6b+9)+b=0 | | 6=w-84/2 | | 20=4g(g-15) | | 63=31-4(x-3) | | 2(p-14)=2 | | -2x+6x+26=3x-22 | | 2(p-4)=2 | | 6b^2=b^2+7-b | | 4(x-5)+4x=-24+2x | | h=16^2+48+3 | | 6(t-88)=24 | | −2+5x=4x+2 | | h+72/2=3 |