If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t2=36
We move all terms to the left:
t2-(36)=0
We add all the numbers together, and all the variables
t^2-36=0
a = 1; b = 0; c = -36;
Δ = b2-4ac
Δ = 02-4·1·(-36)
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12}{2*1}=\frac{-12}{2} =-6 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12}{2*1}=\frac{12}{2} =6 $
| 12x^2+8=-28 | | 24v+v-5v-4v=48 | | 13+a=52 | | -2x+1=12 | | 34n-27n-4n+7n-7n=42 | | w/5+14=21 | | -5*z/3=100 | | 7s-4s-2s+1=9 | | 250+40x=30 | | 9t+t+3t-5t=8 | | 3.6+w=4.9 | | 44x=43x+1 | | n=14n+8 | | j-j+2j=20 | | 256-3x+384-5x=0 | | 17q-12q+4q-8q=12 | | 8.2=x-3.92 | | a+2a-4=11 | | 223=84-y | | -8r-7=(-39) | | 17c-15c+2c-1=19 | | 4b–10=10 | | 20x-18x+5x-2=19 | | 174-y=227 | | -35+.75x=105 | | 7/10=r-(-16/10) | | 31r+11r+6r-26r=44 | | -4=(x/5)+6 | | 50j-2j-9j-31j-2j=6 | | 25=7n | | 3x•2=0 | | 2x+1-3(x-1)=2 |