If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t2=4t
We move all terms to the left:
t2-(4t)=0
We add all the numbers together, and all the variables
t^2-4t=0
a = 1; b = -4; c = 0;
Δ = b2-4ac
Δ = -42-4·1·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4}{2*1}=\frac{0}{2} =0 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4}{2*1}=\frac{8}{2} =4 $
| (4/5)^x=1 | | 5k/2=3k+5 | | 2x-3x=3x+5 | | -2n+12/3+1=-1/3 | | -33=9+7x | | (m+7)(m-8)=0 | | -375c-11=13 | | a+5/7-1/2a=5/7 | | 9/3=x-8/10 | | -121-12x=185-3x | | 7500=1/2*200*b | | (6x+1)+(7x-10)=180 | | 6=-2/7x | | 5/7=a+5/7-1/2a | | 33=6x+3(x-10) | | x2-9x+8=0 | | 0.07x-0.6x^2=-1 | | -8x-87=78-3x | | 3(m+5)-6=3(m+37 | | z2−6=−2 | | (-2,5);m=-3 | | (7+5i)+(4+-8i)=0 | | 28+9y=2(3y+5)+2(2y+5) | | F(x)=8x/x-3 | | 2^(10-2x)=4 | | −13(p+9)=4 | | 2x/5=-18/5 | | 3/(s-2)=1/7 | | -8x-48=24-12x | | -3(-4x-5)=75 | | k/25=5 | | 2x-5=18/5 |