If it's not what You are looking for type in the equation solver your own equation and let us solve it.
u(7u+5)=0
We multiply parentheses
7u^2+5u=0
a = 7; b = 5; c = 0;
Δ = b2-4ac
Δ = 52-4·7·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5}{2*7}=\frac{-10}{14} =-5/7 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5}{2*7}=\frac{0}{14} =0 $
| (2g-1)(4g-7)=0 | | 6x+-7-+6=9x+-7 | | w/5=3.5 | | (3z-4)(z-1)=0 | | 3x-18=-6x+9 | | (7d+4)(d-4)=0 | | |5x-3|=|3x-13 | | 3x-20°=4x-40° | | 4(6+5b)-2(8-2b)=8 | | (4d-3)(d+4)=0 | | 6x+36=2x-16 | | (4z+9)=0 | | 6x+12=2x+6x | | x-2x-20=12;3x-45=0;15x-45=15 | | 3^(3x-3)=47 | | 4^x+5=60 | | (x+4)(3x-7)=-(x+4)10 | | (Z-7)(z-9)=0 | | 82=-2(1-7m) | | 82=-2+14m | | -2(-3x-6)=156 | | 11x+3=-7x+15 | | (x+1)^2-(x-1)^2=x+9 | | -4(-2x-8)=160 | | r/150-10=5 | | 5(x-8)=185 | | (5x-5)+10x=2(-5x-40) | | x/2+x/4+x/3+x/2=180 | | 24−6n=−42 | | 20/15=5x-4/12 | | 15/20=12/5x-4 | | -9(x-5=32-10x |