If it's not what You are looking for type in the equation solver your own equation and let us solve it.
v(2)=8
We move all terms to the left:
v(2)-(8)=0
We add all the numbers together, and all the variables
v^2-8=0
a = 1; b = 0; c = -8;
Δ = b2-4ac
Δ = 02-4·1·(-8)
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{2}}{2*1}=\frac{0-4\sqrt{2}}{2} =-\frac{4\sqrt{2}}{2} =-2\sqrt{2} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{2}}{2*1}=\frac{0+4\sqrt{2}}{2} =\frac{4\sqrt{2}}{2} =2\sqrt{2} $
| 8s=s+21 | | 8a+-4=4a+76 | | x+11=-2x-10 | | (x+5)^2-20^2=0 | | 4x+17=x-10 | | 6(x+4)=35 | | y=3+7/5 | | 2c=c=11 | | 360=74+69+x | | 5x-12=3x=180 | | (x+5)^2=20^2 | | M(t)=-t^2+6t | | (y/3)(y/3)=25 | | 5x3=1080. | | 2y+38 = 2 | | (x+11)(2x+12)=0 | | 2y/5=10 | | M(t)=-t2+6t | | 3n=$18.75 | | 2x-32=-126 | | -15+5x=4(3x+7) | | 3x/5=2(x+1) | | -q-5=-2q | | 14h+67=95 | | 4(1+3x))=52 | | 69+x=360 | | 2/3x+5=65 | | 30i+240=50i | | 60-74+x=360 | | 60+74+x=360 | | 74+x=360 | | 6x+2=25+15x |