v(v-30.5)+(v-26.8)=201.8

Simple and best practice solution for v(v-30.5)+(v-26.8)=201.8 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for v(v-30.5)+(v-26.8)=201.8 equation:


Simplifying
v(v + -30.5) + (v + -26.8) = 201.8

Reorder the terms:
v(-30.5 + v) + (v + -26.8) = 201.8
(-30.5 * v + v * v) + (v + -26.8) = 201.8
(-30.5v + v2) + (v + -26.8) = 201.8

Reorder the terms:
-30.5v + v2 + (-26.8 + v) = 201.8

Remove parenthesis around (-26.8 + v)
-30.5v + v2 + -26.8 + v = 201.8

Reorder the terms:
-26.8 + -30.5v + v + v2 = 201.8

Combine like terms: -30.5v + v = -29.5v
-26.8 + -29.5v + v2 = 201.8

Solving
-26.8 + -29.5v + v2 = 201.8

Solving for variable 'v'.

Reorder the terms:
-26.8 + -201.8 + -29.5v + v2 = 201.8 + -201.8

Combine like terms: -26.8 + -201.8 = -228.6
-228.6 + -29.5v + v2 = 201.8 + -201.8

Combine like terms: 201.8 + -201.8 = 0.0
-228.6 + -29.5v + v2 = 0.0

Begin completing the square.

Move the constant term to the right:

Add '228.6' to each side of the equation.
-228.6 + -29.5v + 228.6 + v2 = 0.0 + 228.6

Reorder the terms:
-228.6 + 228.6 + -29.5v + v2 = 0.0 + 228.6

Combine like terms: -228.6 + 228.6 = 0.0
0.0 + -29.5v + v2 = 0.0 + 228.6
-29.5v + v2 = 0.0 + 228.6

Combine like terms: 0.0 + 228.6 = 228.6
-29.5v + v2 = 228.6

The v term is -29.5v.  Take half its coefficient (-14.75).
Square it (217.5625) and add it to both sides.

Add '217.5625' to each side of the equation.
-29.5v + 217.5625 + v2 = 228.6 + 217.5625

Reorder the terms:
217.5625 + -29.5v + v2 = 228.6 + 217.5625

Combine like terms: 228.6 + 217.5625 = 446.1625
217.5625 + -29.5v + v2 = 446.1625

Factor a perfect square on the left side:
(v + -14.75)(v + -14.75) = 446.1625

Calculate the square root of the right side: 21.122559031

Break this problem into two subproblems by setting 
(v + -14.75) equal to 21.122559031 and -21.122559031.

Subproblem 1

v + -14.75 = 21.122559031 Simplifying v + -14.75 = 21.122559031 Reorder the terms: -14.75 + v = 21.122559031 Solving -14.75 + v = 21.122559031 Solving for variable 'v'. Move all terms containing v to the left, all other terms to the right. Add '14.75' to each side of the equation. -14.75 + 14.75 + v = 21.122559031 + 14.75 Combine like terms: -14.75 + 14.75 = 0.00 0.00 + v = 21.122559031 + 14.75 v = 21.122559031 + 14.75 Combine like terms: 21.122559031 + 14.75 = 35.872559031 v = 35.872559031 Simplifying v = 35.872559031

Subproblem 2

v + -14.75 = -21.122559031 Simplifying v + -14.75 = -21.122559031 Reorder the terms: -14.75 + v = -21.122559031 Solving -14.75 + v = -21.122559031 Solving for variable 'v'. Move all terms containing v to the left, all other terms to the right. Add '14.75' to each side of the equation. -14.75 + 14.75 + v = -21.122559031 + 14.75 Combine like terms: -14.75 + 14.75 = 0.00 0.00 + v = -21.122559031 + 14.75 v = -21.122559031 + 14.75 Combine like terms: -21.122559031 + 14.75 = -6.372559031 v = -6.372559031 Simplifying v = -6.372559031

Solution

The solution to the problem is based on the solutions from the subproblems. v = {35.872559031, -6.372559031}

See similar equations:

| 50=(3x+1) | | -b=3 | | 25x^2+70x+49=0 | | X=90-(125-5x) | | 50=(3x+1)+x | | K-10=-5 | | 2x(2x-1)(x+3)=0 | | 2n-5n=4(n+2) | | 90=(5x+7)+(9x-1) | | 5(3x-7)=3x-8 | | x+(x+2)+(x+4)=171 | | 3+3x+2x=53 | | 14-7(5w-8)= | | x+(x+2)+(x+4)=195 | | X=90-(6x+12) | | 3x+2+5(x-1)=8x+17 | | x+4(x+2)=68 | | (3v-8)(6+V)=0 | | x-5(8+7x)= | | 5(3x-7)=20 | | 90=(7+3x)+(2x+13) | | 4(2c+8)=5(c+4) | | 5(3x-7)= | | x+5x=46 | | v+9(v-30.5)+(v-26.8)=201.8 | | x^4-10x^2+9=0 | | 8+4x+3x=36 | | 3x+2=2(2x-7) | | x+2x=159 | | 7x^2-6x=0 | | 4(y-7)=2(2y+41) | | 7+3x=5c |

Equations solver categories