v+(v-23.2)+(v+33.5)=192.2

Simple and best practice solution for v+(v-23.2)+(v+33.5)=192.2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for v+(v-23.2)+(v+33.5)=192.2 equation:


Simplifying
v + (v + -23.2) + (v + 33.5) = 192.2

Reorder the terms:
v + (-23.2 + v) + (v + 33.5) = 192.2

Remove parenthesis around (-23.2 + v)
v + -23.2 + v + (v + 33.5) = 192.2

Reorder the terms:
v + -23.2 + v + (33.5 + v) = 192.2

Remove parenthesis around (33.5 + v)
v + -23.2 + v + 33.5 + v = 192.2

Reorder the terms:
-23.2 + 33.5 + v + v + v = 192.2

Combine like terms: -23.2 + 33.5 = 10.3
10.3 + v + v + v = 192.2

Combine like terms: v + v = 2v
10.3 + 2v + v = 192.2

Combine like terms: 2v + v = 3v
10.3 + 3v = 192.2

Solving
10.3 + 3v = 192.2

Solving for variable 'v'.

Move all terms containing v to the left, all other terms to the right.

Add '-10.3' to each side of the equation.
10.3 + -10.3 + 3v = 192.2 + -10.3

Combine like terms: 10.3 + -10.3 = 0.0
0.0 + 3v = 192.2 + -10.3
3v = 192.2 + -10.3

Combine like terms: 192.2 + -10.3 = 181.9
3v = 181.9

Divide each side by '3'.
v = 60.63333333

Simplifying
v = 60.63333333

See similar equations:

| 4(6y-2)=16y | | -17x+19y=-2 | | 5(7+4n)=-37+8n | | v+(v-33.5)+(v+23.2)=192.2 | | 8b-4+8b=-4 | | ln(x-2)-ln(x+2)=ln(x-1)-ln(2x+4) | | 2x^2+15x+28=56 | | 6x-8x=44 | | 6x-8x=43 | | v+(v-33.2)+(v+25.7)=197.1 | | -5+5a=5a-5 | | x(x^2-1)=0 | | 1.2(x+3.5)=4.8 | | 4x-5x=28 | | 5c+3=3c+4 | | y=-4*7+9 | | y=-4*3+9 | | 7j+6+5k+8jk-2k+1= | | 12x^3-16x=0 | | (x^2+64)=17 | | 5g+4(-5+3g)=1-5 | | y+3(-2)= | | v+(v-31.5)+(v+26.2)=200.2 | | -4.9x-2=-4.3x+4 | | x^2+xy-y^2=4 | | 3x+-5=22 | | S-19=-46 | | K^2=-14-9k | | 8x-5=9x+2 | | 3(7-8m)=-5m-36 | | .25x+7=x-15 | | 0.4x-32=1.2x |

Equations solver categories