If it's not what You are looking for type in the equation solver your own equation and let us solve it.
v2+24v=0
We add all the numbers together, and all the variables
v^2+24v=0
a = 1; b = 24; c = 0;
Δ = b2-4ac
Δ = 242-4·1·0
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-24}{2*1}=\frac{-48}{2} =-24 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+24}{2*1}=\frac{0}{2} =0 $
| 6r=r+5 | | 9+21=x | | 200-12*a=644 | | 14+12x=2x+10+84 | | 4.5y+6=3(2+3y)–4y | | 3t+24=54 | | 4^2x=13^x-1 | | 14x+12x=2x+10+84 | | 8(2x-6)=8(x-6) | | 7x-9(x+4)=3x-26 | | -10a*3=8(-4a+-1) | | 27x-2=13x+2+52 | | (2+3i)(1-4i)=0 | | m/4+m/5=27 | | 6+9p=5p+18 | | 7c+4=3c | | 8x+3-2-1=2x+6x | | 5p+3/3=3p-1/4 | | Y=75-3x/4 | | 8a+40=14a+4 | | 7x+19+51=14x | | 4x-2(x-5)=-6+4x+4 | | 53=-19z+5+7 | | 51=7x+19 | | 12b-5=8b-21 | | -6=-3/5v | | 30=5/3x | | 12g=g | | 14=-7/4v | | 9x/3+25+x+21=2 | | 5a+39=7+13a | | 1+2(1-7a)=-3(3a-6) |