If it's not what You are looking for type in the equation solver your own equation and let us solve it.
v2+4v-44=0
We add all the numbers together, and all the variables
v^2+4v-44=0
a = 1; b = 4; c = -44;
Δ = b2-4ac
Δ = 42-4·1·(-44)
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-8\sqrt{3}}{2*1}=\frac{-4-8\sqrt{3}}{2} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+8\sqrt{3}}{2*1}=\frac{-4+8\sqrt{3}}{2} $
| 16t^2+70t+6=-3 | | 4x-(17-9x)=12+1-3x | | x^2+2/15=11/15x | | 4(x–3)=4 | | x(5x^2+14x-24)=0 | | 16=8y-4 | | y-6.8=3.4 | | 500+1/6b=11.25 | | 12x^2-32+5=0 | | 15w+29=8w+57 | | 90=10w | | 10x²-6=9x | | 3b+26=4b+24 | | 5/4x-2/3=1 | | 6p+9=5p+16 | | 2(p+1=24 | | x3+x2−17x+15=0x3+x2−17x+15=0. | | 2q−6=6 | | 9-2x-3x=-64 | | 3(2x+5)=54 | | x-40=56+5x | | 13k-14/2-5=5k | | 2m(m-2)=6-3m | | 2x^2-390=2 | | 5x-6/7=2 | | 2x+6=12x+12 | | -128+5x=32-3x | | 16x+2=22x-16 | | 5(x^2+1/x^2)-12(x+1/x)-11=0 | | 6-x/7=7 | | 3b+26=4b+26 | | -8x-30=45-5x |