If it's not what You are looking for type in the equation solver your own equation and let us solve it.
v2+7v+10=0
We add all the numbers together, and all the variables
v^2+7v+10=0
a = 1; b = 7; c = +10;
Δ = b2-4ac
Δ = 72-4·1·10
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-3}{2*1}=\frac{-10}{2} =-5 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+3}{2*1}=\frac{-4}{2} =-2 $
| 5(1x+7)=30 | | 2(2w+7=42 | | 125+204+x=3*180 | | 26-7y=-61 | | 3x-65/2+5/2x=6 | | 1/6(7x+9)=65/6 | | -15=3(1+p) | | C+3D=2c | | p−1/4.3=−5/6 | | p−1/4X3=−5/6 | | -5(-1+1x)=9 | | 4.3x+50.8=3.4-11.5x | | (3x-14)=110 | | -2u–2u=40 | | 6(5x+1)=-324 | | 5c+2c=42 | | 30=25+5n | | 10n+30=70 | | 7w+8/6=w+4/7+11 | | 64=-8(w+1) | | (x+3)(x^2+3x+2)=0 | | -6=-3(t+4) | | (145+202+x)=327 | | C+24=d+14 | | 10b=6 | | 3(2x–2)=24–3x | | C+23=d+14 | | 3+5*2=x | | -2x+8x-8=6(x-6)-2 | | (145+202+x)/3=327 | | 3(5t+1)-11=t-(t+7) | | 100=50+2n |