If it's not what You are looking for type in the equation solver your own equation and let us solve it.
v2+8v=15
We move all terms to the left:
v2+8v-(15)=0
We add all the numbers together, and all the variables
v^2+8v-15=0
a = 1; b = 8; c = -15;
Δ = b2-4ac
Δ = 82-4·1·(-15)
Δ = 124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{124}=\sqrt{4*31}=\sqrt{4}*\sqrt{31}=2\sqrt{31}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{31}}{2*1}=\frac{-8-2\sqrt{31}}{2} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{31}}{2*1}=\frac{-8+2\sqrt{31}}{2} $
| 8x^2−5x=0 | | 2x+2x0=16 | | 8x2−5x=0 | | 2x/5=-2x/2 | | 9(b-91)=54 | | -4x+8=-14-2x | | 37x50=x | | 4x0.4+0.6=2.2 | | 7b+-5=18.92 | | x+x+30-2x+30-2x=360 | | 4x+5-x=2+2x-1 | | -0.5x+2.1=-0.4x+4.8 | | 15=c/2+11 | | 4(x-2)+9=2x+17 | | 5x13=180 | | -y5+15=3 | | 7=k/3+3 | | x+1+x+2+2x=x+30-2x+x-30+2x | | 5k^2+7k=0 | | 6=w/7.68 | | 7=t-73/3 | | 1/3x+2.7=10.4 | | 8a+3a=9a | | 8÷4=19n÷4 | | (9x+15)*(3x-9)=x | | 2m^2+2m=12 | | (9x+15)*(3x-15)=x | | 2(6y-5)-4(2y-7)=6 | | 3(x-4)=8(x-1) | | 1/4s=-3 | | 1/2+1/4y=3/2 | | 1/2x+1/4=3/2 |