If it's not what You are looking for type in the equation solver your own equation and let us solve it.
v2+v-90=0
We add all the numbers together, and all the variables
v^2+v-90=0
a = 1; b = 1; c = -90;
Δ = b2-4ac
Δ = 12-4·1·(-90)
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-19}{2*1}=\frac{-20}{2} =-10 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+19}{2*1}=\frac{18}{2} =9 $
| 10)5(-5-3v)=-5(v+1) | | 125+x+39=180 | | 3x+16=35 | | -258+3j=-7(-2+-4j)+9j | | -2(x+8)=1/3(3x+15 | | 2.5x+10=x | | n-2=38 | | 2x+9=2x+41 | | 4a+3+3a-3+a+16=180 | | -8x-6(1+2x)=2+3(3x+7) | | -6y/2+3y=28 | | 3z+54=-9z+6 | | 5.7(13r-2)=74 | | 7w-133=42 | | 33+b-7+2b-44=180 | | -2(5n-5)=2(-n-7) | | 5b-26=2b+5(-6b+8) | | -15(3-t)=18t | | 2.2(7r-10.3)=76.5 | | 3x-4-107=180 | | 8-3^x=-11 | | 7(x-5)=3+1 | | 1.2x^2+x+6=0 | | b(b+2)+3(b+2)=0 | | 133w-7=42 | | 32x+5=3x–3 | | 18/15x=20/15 | | 0.5(16+x)10=140 | | 4m=16-4m | | Y=20x+25.05 | | 3x2–27=0 | | -3(1+7v)-8v=-8(2v-6)+1 |