v2=43

Simple and best practice solution for v2=43 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for v2=43 equation:



v2=43
We move all terms to the left:
v2-(43)=0
We add all the numbers together, and all the variables
v^2-43=0
a = 1; b = 0; c = -43;
Δ = b2-4ac
Δ = 02-4·1·(-43)
Δ = 172
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{172}=\sqrt{4*43}=\sqrt{4}*\sqrt{43}=2\sqrt{43}$
$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{43}}{2*1}=\frac{0-2\sqrt{43}}{2} =-\frac{2\sqrt{43}}{2} =-\sqrt{43} $
$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{43}}{2*1}=\frac{0+2\sqrt{43}}{2} =\frac{2\sqrt{43}}{2} =\sqrt{43} $

See similar equations:

| 4q−2q−q−1=6 | | 5x^2-18+6=-3 | | 9x+18=(5+7x)+15 | | x^2+7x−9=7x+55 | | x²=3x | | 1=6/x+x/6 | | C^2-4c=6 | | 0=1-6/x-x/6 | | 2r^2=-13r-6 | | 16x+39+x=90 | | 2r^=-13r-6 | | -4/5x+4=-4 | | -(2x+3)-5=-1x-(x+8) | | f(3)=4/5(3)-2 | | -6+3/4x=-3 | | 640=1/2m10*10 | | -5+3/2x=1 | | 2x(3x+2x)=312 | | 8+2/3x=10 | | 20=4*7+b | | 90+(5x-14)=180 | | -16=3*5-d | | (2x=3)+(x-6)=90 | | 5t^2-9t=2 | | 7/10=h/3 | | 90+(9x+16)+(5x-14)=180 | | 8z=z+7z | | 7x+1+x+12=109 | | 61+×+12=4x-6 | | 2y-18+6=20 | | X²+y²8y=33 | | 61+x+12=4x-6 |

Equations solver categories