If it's not what You are looking for type in the equation solver your own equation and let us solve it.
v2=49
We move all terms to the left:
v2-(49)=0
We add all the numbers together, and all the variables
v^2-49=0
a = 1; b = 0; c = -49;
Δ = b2-4ac
Δ = 02-4·1·(-49)
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14}{2*1}=\frac{-14}{2} =-7 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14}{2*1}=\frac{14}{2} =7 $
| -67+x=175 | | x/7.3=4.5 | | 5=2v | | 9x^2+19x+22=0 | | 2(3x-2)+2x=12 | | 4x/5=-15 | | 11+16.25x=206 | | -5x+6-(x-2)=-3(x-3) | | 3(x+2)-9=15-4(5x-2) | | 10^u=1000.000 | | .75x=15+.35x | | .75x=15+.3x | | 9765625=5^n | | (d3+2d2+d+2)y=0 | | 5x+5=10x-40 | | 3x-7-3=-16 | | z+25=76 | | n+99=100 | | b+98=100 | | s+73=94 | | z+46=77 | | z+62=79 | | 94+b=97 | | 71+b=87 | | y+82=99 | | 39+z=87 | | 9x-30=25x+80 | | 94+y=99 | | 21+y=82 | | p^+4p-2=p^-p+8 | | 17-p=30 | | i2x+1i/3=8 |