w(10+6w)=7

Simple and best practice solution for w(10+6w)=7 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for w(10+6w)=7 equation:


Simplifying
w(10 + 6w) = 7
(10 * w + 6w * w) = 7
(10w + 6w2) = 7

Solving
10w + 6w2 = 7

Solving for variable 'w'.

Reorder the terms:
-7 + 10w + 6w2 = 7 + -7

Combine like terms: 7 + -7 = 0
-7 + 10w + 6w2 = 0

Begin completing the square.  Divide all terms by
6 the coefficient of the squared term: 

Divide each side by '6'.
-1.166666667 + 1.666666667w + w2 = 0

Move the constant term to the right:

Add '1.166666667' to each side of the equation.
-1.166666667 + 1.666666667w + 1.166666667 + w2 = 0 + 1.166666667

Reorder the terms:
-1.166666667 + 1.166666667 + 1.666666667w + w2 = 0 + 1.166666667

Combine like terms: -1.166666667 + 1.166666667 = 0.000000000
0.000000000 + 1.666666667w + w2 = 0 + 1.166666667
1.666666667w + w2 = 0 + 1.166666667

Combine like terms: 0 + 1.166666667 = 1.166666667
1.666666667w + w2 = 1.166666667

The w term is 1.666666667w.  Take half its coefficient (0.8333333335).
Square it (0.6944444447) and add it to both sides.

Add '0.6944444447' to each side of the equation.
1.666666667w + 0.6944444447 + w2 = 1.166666667 + 0.6944444447

Reorder the terms:
0.6944444447 + 1.666666667w + w2 = 1.166666667 + 0.6944444447

Combine like terms: 1.166666667 + 0.6944444447 = 1.8611111117
0.6944444447 + 1.666666667w + w2 = 1.8611111117

Factor a perfect square on the left side:
(w + 0.8333333335)(w + 0.8333333335) = 1.8611111117

Calculate the square root of the right side: 1.364225462

Break this problem into two subproblems by setting 
(w + 0.8333333335) equal to 1.364225462 and -1.364225462.

Subproblem 1

w + 0.8333333335 = 1.364225462 Simplifying w + 0.8333333335 = 1.364225462 Reorder the terms: 0.8333333335 + w = 1.364225462 Solving 0.8333333335 + w = 1.364225462 Solving for variable 'w'. Move all terms containing w to the left, all other terms to the right. Add '-0.8333333335' to each side of the equation. 0.8333333335 + -0.8333333335 + w = 1.364225462 + -0.8333333335 Combine like terms: 0.8333333335 + -0.8333333335 = 0.0000000000 0.0000000000 + w = 1.364225462 + -0.8333333335 w = 1.364225462 + -0.8333333335 Combine like terms: 1.364225462 + -0.8333333335 = 0.5308921285 w = 0.5308921285 Simplifying w = 0.5308921285

Subproblem 2

w + 0.8333333335 = -1.364225462 Simplifying w + 0.8333333335 = -1.364225462 Reorder the terms: 0.8333333335 + w = -1.364225462 Solving 0.8333333335 + w = -1.364225462 Solving for variable 'w'. Move all terms containing w to the left, all other terms to the right. Add '-0.8333333335' to each side of the equation. 0.8333333335 + -0.8333333335 + w = -1.364225462 + -0.8333333335 Combine like terms: 0.8333333335 + -0.8333333335 = 0.0000000000 0.0000000000 + w = -1.364225462 + -0.8333333335 w = -1.364225462 + -0.8333333335 Combine like terms: -1.364225462 + -0.8333333335 = -2.1975587955 w = -2.1975587955 Simplifying w = -2.1975587955

Solution

The solution to the problem is based on the solutions from the subproblems. w = {0.5308921285, -2.1975587955}

See similar equations:

| X^2+22x-58=0 | | w(19+12w)=21 | | -5(2x+1)=2(3x-4) | | 6x-15y=20 | | 0.5D+5.5E=30.5 | | 5*(x+2)-3*(1-x)=6*(4+x)-7 | | 22b-3(5b+4)=16 | | u+2=2 | | 9-3r=15 | | w^3-7w^2=8w | | 8x-8=9x | | 2v^3-2v^3x^4=0 | | 67.75-a=34.81 | | 8x+5=2x+1 | | 13s+s^2+30=0 | | 10d-(5d+8)=42 | | -3x+15=6 | | 14a^2=2a | | 8a-(5a+2)=16 | | 5z^2-7z-6=0 | | [4x]-12=4 | | 4x+5y=48 | | -[6-9a]=16 | | 20y^2+13y+2=0 | | lnx=6 | | [3a]=30 | | 5m-2(m-5)=1 | | 5x^2-10=3 | | [16x]=32 | | 7=21+x | | 6(2h+3)-2h=28 | | 2x^2-8=33 |

Equations solver categories