If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w(10w+3)-7=0
We multiply parentheses
10w^2+3w-7=0
a = 10; b = 3; c = -7;
Δ = b2-4ac
Δ = 32-4·10·(-7)
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{289}=17$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-17}{2*10}=\frac{-20}{20} =-1 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+17}{2*10}=\frac{14}{20} =7/10 $
| -2p2=16p+24 | | 3/5=15x | | 2/3=30x | | 1/26=x+2 | | 2x+23=3 | | 2x+23/3=3 | | 1/x^2=1.78 | | -15=5y-20y | | -2/7j+1=3/7j | | -7+8x=5x+14 | | -q+3=29q-57 | | 0=78+96x-16^2 | | 30=2(b–9) | | 15k+12=-10k-13 | | 4h+18=10h | | 5(3n+1)=65 | | C+2.54.3c=1.8 | | X-10=-x+14 | | x^2-170x+7000=0 | | 5-2x=20+3x | | 132=6(2-4x) | | 4(x-1)-8x=-4(x-9)+8 | | -7b-3=-6b+7 | | -8/3=2y | | 8z-4=68 | | 6x+2=x-13 | | Y+513;y=17 | | 2+8z=50 | | 9z-5=67 | | c=(3.14)(24) | | 2n+3=-8n+23 | | 5j+7=-3 |