If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w(2+w)=63
We move all terms to the left:
w(2+w)-(63)=0
We add all the numbers together, and all the variables
w(w+2)-63=0
We multiply parentheses
w^2+2w-63=0
a = 1; b = 2; c = -63;
Δ = b2-4ac
Δ = 22-4·1·(-63)
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-16}{2*1}=\frac{-18}{2} =-9 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+16}{2*1}=\frac{14}{2} =7 $
| 5x+5=40^ | | 7s+9.5=883.5 | | 4x+20=33 | | 350x+20x=68x+20x | | 11y+7=11 | | 12+7(-6+r)=-12 | | x+14=2(x | | u-18=40 | | 9x=x^2+2x-8 | | 8p2−6p−7=0 | | 27+3y=5 | | 8x+40=104 | | 58+58+x=100 | | 12*n=36 | | Q(2q-11)=6 | | 60=4x=2x | | 3m+7m+11m−13m+m=–18 | | 40-n=23 | | 15w/9w-12=4+15w/4+3w | | 68x+20×=350x+20x | | 3x=1/2(x+4+21) | | P(3p+2)=8 | | 5x+25=38 | | 8x+22=3x+157 | | 37+n=68 | | 5-4k=7 | | 37+n=86 | | 8x+4+6x+10=180 | | 5x+10=-15+4x | | 4( | | 4( | | 68x+20x=350x+20x |