If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w(2w+5)=133
We move all terms to the left:
w(2w+5)-(133)=0
We multiply parentheses
2w^2+5w-133=0
a = 2; b = 5; c = -133;
Δ = b2-4ac
Δ = 52-4·2·(-133)
Δ = 1089
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1089}=33$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-33}{2*2}=\frac{-38}{4} =-9+1/2 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+33}{2*2}=\frac{28}{4} =7 $
| -40+4x=-2(-5x+8) | | 7x+23=6x+21 | | (2x-5)2-8=0 | | 5(2+2x)=4x-20 | | -10x²+60x=0 | | 612=3x | | 5(5x-8)=3(x-9) | | 22+2x=12+x | | 180+2x+x=180 | | 3^x=32 | | 2x+-38=20 | | X/15n=9 | | 21xx26=19x-12 | | 6x+90=0 | | x^2+15+8x=180 | | (x^2/5)^2-5x=0 | | 5/24+g=1/4 | | 2x+20+30=90 | | 4-x÷5=13 | | 8(5+2x)=56 | | Y-45=x^2+2x+10 | | -13=7+y | | 4-x-5=13 | | 4(2x)+5=2x+x+23 | | (17x-9)+4x=180 | | 1.25x=43 | | 5/4x=43 | | -8x^2-15x-2=0 | | (5/4)x=43 | | w-7.5=8.64 | | v+1.12=5.47 | | w+3.2=5.36 |