If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w(2w-4)=160
We move all terms to the left:
w(2w-4)-(160)=0
We multiply parentheses
2w^2-4w-160=0
a = 2; b = -4; c = -160;
Δ = b2-4ac
Δ = -42-4·2·(-160)
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-36}{2*2}=\frac{-32}{4} =-8 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+36}{2*2}=\frac{40}{4} =10 $
| 25n^2+20n=25=0 | | 4x-5(3x-1=-17 | | 9/s=-13 | | 3(5-t)-4t=28 | | X-3y/5=4 | | X^2-2.4x=0 | | 6d−11/3=2d−13/2 | | 4x-5(3x-1)=17 | | 3^3x=23 | | 3^3x=32 | | 3y-y=7 | | 10=0.2x(x-5.1) | | (7x-1)+(4x+3)=180 | | |2x-1|=-5 | | (7x-6)(3x-3)+(3x-11)(2x+3)=0 | | 8/7=x/28 | | 3x+5(-2x-6)=19 | | 2(5x-12)=-(5x-6) | | (7x-6)-(4x+5)=0 | | 1/x−1−2/7=3 | | 6^4x-4=32 | | 2x2=128 | | 33=n÷3n= | | -102-12x=-246 | | 7x+3x-(10x/2)=5+x | | (7x-6)(3x+3)+(3x-1)(2x+3)=0 | | -16-5x=44 | | 18*x/2=126 | | 3-4y=7+2y | | -143+15x=-323 | | 5w-10=7(w-4) | | -20-4x=-56 |